
3 Common Pitfalls in Microservice Integration
(Bonus : And how to avoid them J) credit to Bernd Ruecker

Patricio Zambrano
Technical Consultant, Camunda Inc.

2

Microservices Agenda

• Introduction

• 3 Common Challenges and How to Avoid Them

• Conclusion

Raise your hand

• REST

• Microservices

• Java

Distributed
systems

Distributed
systems

Challenges of
asynchronicity

Distributed
Transactions

Communication
is complex

7

Some Microservices….

Some
Service

Some
Service

Some
Service

Some
Service

Some
Service

Some
Service

Some
Service

Failure will
happen.

Accept it!

But keep it
local! Be
resilient.

Let‘s start with a simple example

Credit
CardPayment

REST

Payment Requestor Application

What happens if the Credit Card Service is Super Slow?

Live hacking

https://github.com/flowing/flowing-retail/blob/master/payment-
rest/src/main/java/io/flowing/retail/payment/port/resthacks/PaymentRestHacksControllerV2.java

https://github.com/flowing/flowing-retail/blob/master/payment-rest/src/main/java/io/flowing/retail/payment/port/resthacks/PaymentRestHacksControllerV2.java

Circuit
Breaker

Photo by CITYEDV, available under Creative Commons CC0 1.0 license.

https://pixabay.com/de/schutzschalter-fi-schalter-1167327/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Failing Fast is important….

..but not enough

Photo by https://www.archdaily.com/560641/liverpool-insurgentes-department-store-rojkind-arquitectos

Check-in

Web-UI

You

Current situation

Check-in

Barcode
Generator

Web-UI

You

Output
Mgmt

Current situation

Current situation

Check-in

Barcode
Generator

Web-UI

You

Output
Mgmt

Circuit breaker

Another screenshot

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Current situation – the bad part

Current situation – the bad part

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Current situation – the bad part

Check-in

Barcode
Generator

Web-UI

Me

Output
MgmtStateful

Retry

Another Example

We are having some technical difficulties
and cannot present you your boarding

pass right away.

But we do actively retry ourselves, so lean
back, relax and we will send it

on time.

Just made this up

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Possible Solution – Much better?

Stateful
Retry

The failure
never leaves
this scope!

Persist thing
(Entity, Document,

Actor, …)

State
machine or
workflow

engine

Typical
concerns

DIY = effort,
accidental
complexity

Complex,
proprietary,

heavyweight, slow,
don‘t scale,

developer adverseScheduling, Versioning,
operating, visibility,
scalability, …

Handling State

Typical
concerns

Current Players in the State Machine Market

• AWS Step Function
• UBER Cadence
• Netflix Conductor
• Camunda J
• Zeebe J
• jBPM
• Activiti

Performance: Zeebe vs. Kafka

Vs. Apache Kafka

Current Players in the State Machine Market

• AWS Step Function
• UBER Cadence
• Netflix Conductor
• Camunda J (Raise of hand?)
• Zeebe J
• jBPM
• Activiti

In the previous demo….

Credit
CardPayment

REST

Payment Requestor Application

What if I want my Payment to be Asynchronous and
Retry itself when my Credit Card Service Slow?

Live hacking

https://github.com/flowing/flowing-retail/blob/master/payment-
rest/src/main/java/io/flowing/retail/payment/port/resthacks/PaymentRestHacksControllerV3.java

https://github.com/flowing/flowing-retail/blob/master/payment-rest/src/main/java/io/flowing/retail/payment/port/resthacks/PaymentRestHacksControllerV3.java

Demo

Credit
CardPayment

REST

Payment Requestor Application

What if I want a Synchronous response
when everything is fast?

Live hacking

https://github.com/flowing/flowing-retail/blob/master/payment-
rest/src/main/java/io/flowing/retail/payment/port/resthacks/PaymentRestHacksControllerV3.java

https://github.com/flowing/flowing-retail/blob/master/payment-rest/src/main/java/io/flowing/retail/payment/port/resthacks/PaymentRestHacksControllerV3.java

Payment

Now you have a state machine!

Credit
CardREST

has to implement

Retry
has to implement

Idempotency

Client Service
Provider

Most important factors to consider in distributed systems (so
far..)

We are processing your payment.
Do not leave this page.

And for god sake – do not reload!

It is a business
problem anyway!

Bad Example..

We are processing your payment.
Do not leave this page.

And for god sake – do not reload!

It is a business
problem
anyway!

We are currently processing
your request. Don‘t worry, it will

happen safely –
even if you loose connection.

Feel free to reload this page any
time!

Better…

It is impossible
to differentiate
certain failure
scenarios(and

Code
Exceptions).

Independant of
communication style!

Service
Provider

Client

Distributed systems introduce complexity you have to tackle!

Credit
CardPayment

REST

Distributed systems introduce complexity you have to tackle!

Credit
CardPayment

REST

Do it
reliably

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Workflows live within service
boundaries

Different Architecture Options

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Different architecture options

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Different architecture options

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Different architecture options

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

generateBoardingPass

HTTP 200 OK

HTTP 202 ACCEPTED

Check-in

A synchronous response is possible
in the happy case, otherwise it is

switched to asynchronous
processing.

First Sync then Async

The customer wants a synchronous response…

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

!Eh – no!

Synchronous communication
is the crystal meth of

distributed programming

Todd Montgomery and Martin Thompson
in “How did we end up here” at GOTO Chicago 2015

Challenges of
asynchronicity

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Asynchronous communication

You need to
monitor
timeouts

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Remember…

The
failure
never
leaves
this

scope!

Workflow…

Easy to
handle
time

Workflow…

has to implement

Timeout, Retry
has to implement

Idempotency

Client Service
Provider

Who uses a message bus?

Who has no problems
operating a message bus?

Dead messages | No context | Inaccesible payload | Hard to
redeliver |

Home-grown message hospitals | …

Other Architecture options

A parte de imagem com identificação de relação rId5
não foi encontrada no arquivo.

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Other Architecture options

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

A parte de imagem com identificação de relação rId4
não foi encontrada no arquivo.

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Other Architecture Options

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

A parte de imagem com identificação de relação rId4
não foi encontrada no arquivo.

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Distributed
Transactions
Distributed
Transactions

Distributed
systems 2007

• ACID Transactions
• Scalability
• Troubleshooting TM
• Still Required!!

Distributed transactions using compensation *

Compensation

*aka Saga pattern

Eventual consistency

Temporarily
inconsistent

state
But only

temporarily!

Demo Time

Payment Requestor Application

Node.js App

Live hacking

https://github.com/flowing/flowing-retail/blob/master/payment-
rest/src/main/java/io/flowing/retail/payment/port/resthacks/PaymentRestHacksControllerV6.java

https://github.com/flowing/flowing-retail/blob/master/payment-rest/src/main/java/io/flowing/retail/payment/port/resthacks/PaymentRestHacksControllerV6.java

has to implement

Timeout, Retry,
Compensation

has to offer

Compensation
has to implement

Idempotency

Client Service
Provider

has to implement

Timeout, Retry,
Compensation

has to offer

Compensation
has to implement

Idempotency

Client Service
Provider

Don‘t
forget
about
state

Before mapping processes
explicitly with BPMN and DMN, the
truth was buried in the code and
nobody knew what was going on.

Jimmy Floyd, 24 Hour Fitnesse

Event-driven example also available

InventoryPaymentOrder ShippingCheckout Monitor

https://github.com/flowing/flowing-retail/

Kafka

Human
Tasks

H2 H2

https://github.com/flowing/flowing-
retail/tree/master/zeebe

https://github.com/flowing/flowing-retail/

Workflows live inside service boundaries

Ka
fk

a
or

Ze
eb

e

Reality check

Sales-Order & Order-Fulfillment
via Camunda

for every order worldwide
(Q2 2017: 22,2 Mio)

Camunda Value Technical Use Cases Business Process
Examples

Improving

development,

operations and visibility

of automated

workflows and

decisions.

Straight-Through

Processing

Microservice

Orchestration

Human Workflow

Management

Business Rule Automation

E-Commerce: Order

Execution

Finance: Stock Trading

Insurance: Claim

Settlement

Telco: OSS/BSS

……..

Some of the Workflow Engine Use Cases and… what we talked
about

72

Be aware of complexity of distributed
systems
Know strategies and tools to handle it
e.g. Circuit breaker (Hystrix)

Workflow engine for stateful retry, waiting,
timeout and compensation (Camunda)

https://www.infoworld.com/article/3254777/application-development/
3-common-pitfalls-of-microservices-integrationand-how-to-avoid-them.html

Where to learn more

#6

Contact Us

• Andreas Stange | International Sales
• +49-172-862-2730 | Berlin

• Mauricio Bitencourt | Customer Delivery & Success
• +55 51 984.087.798 | São Paulo

Q&A ?

Camunda Ecosystem

Model > Execute > Improve

What is ZEEBE?

• Zeebe scales orchestration of workers and microservices using visual workflows. Zeebe is
horizontally scalable and fault tolerant so that you can reliably process all your transactions as
they happen.

